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Extensionality and the lambda calculus

Extensional axioms (or equalities) are customary in lambda

calculus: they give us

• categoricity (universal property) of the associated data

type

• a sort of observational equivalence

Typical examples are:

• η-equality:

(η) λx.Mx = M (x 6∈ FV (M))

• surjective pairing:

(SP ) 〈π1(M), π2(M)〉 = M

• case uniqueness:

(+!) case(P,M ◦ inA,M ◦ inB) = MP
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Extensionality and universal properties
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That can be written as:

h = 〈f, g〉 = 〈π1 ◦ h, π2 ◦ h〉
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That can be written as:

h = [f, g] = [h ◦ in1, h ◦ in2]
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Extensionnality and categories (cont.)

Arrow type and axiom η

A×B //
f

��

Λ(f)×idB

C

CB ×B

<<

eval

②②②②②②②②②②②②②②②②②②②②②②②②

The uniqueness of h = Λ(f ) can be written

h = Λ(f )

= Λ(eval ◦ h× idB)

= Λ(eval ◦ 〈h ◦ π1, idB ◦ π2)〉)
= [[λx.Mx]] if h = [[M ]]

4



From equations to rewriting

Two choices to orient extensional equalities:

η λx.Mx −→←− M x 6∈ FV (M)

SP 〈π1(M), π2(M)〉 −→←− M

(+!) case(P,M ◦ inA,M ◦ inB) −→←− MP

as contractions

+ the rules do not depend on types

- the rules are non-local: require search in FV(M) or

equality testing

- the rules are not left-linear (except η)

- do not mix well with other rules like Top (lost CR)

as expansions

+ the rules are local

+ do mix well with other rules like Top

- depend on types to make sense

- need some restrictions to preserve normalization

5



Normalization and conditional expansion rules

Two kind of loops can arise using expansions näıvely, let’s

see the case of η:

Structural:

λx.M // λy.(λx.M)y // λy.M [y/x] =α λx.M

Contextual:

MN // (λx.Mx)N // MN

To break the loops we turn expansions into conditional

rules:

(η) M // λx : A.Mx if







































xfresh

M : A→ B

M is not a λ-abstraction

M is not applied

Then, restricted expansion is no longer a congruence,

but we can show that:

• no equality is lost

• expansions do not introduce new β redexes

• expansion alone converges

• normalization and confluence can be preserved when adding

expansions to several calculi
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Chronology I

1970s: the first expansion

1971 Prawitz suggests to reverse η [Pra71]

1976 Huet uses βη-long normal forms for higher-order unifica-
tion [Hue76]

1979 Mints reverses η and SP [Min79]

197- Many people suggest expansions: Martin-Löf, Meyer, Statman,
etc.

1980s: the contraction

1980 Klop’s counterexample to CR for λ+SP [Klo80]

1981 Pottinger shows CR for typed λβη+SP [Pot81]

1986 Lambek - Scott, Obtulowicz: typed λβη+SP+T is not
CR [LS86]

1987 Poigné - Voss try completion for λβη+SP+T+sums and recur-
sion [PV87]

1989 Nesmith: Klop’s counterexample holds for simply typed λ-
calculus+fixpoints [Nes89]

1991 Curien - Di Cosmo: completion for polymorphic
λβη+SP+T [CDC96]

1994 Necula: η is ok with algebraic non-currified TRS’s [Nec94]
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Chronology II

1990s: the second expansion

1991 Jay: SN for expansions+T+N [Jay92]

1992 Di Cosmo - Kesner: CR+SN for expansions+T+sums+weak extensional sums, CR with
recursion [DCK93, DCK94b]

1992 Cubric: CR for expansions+T [Cub92]

1992 Ghani - Jay: CR+SN for expansions+T+N [JG92]

1992 Akama: SN+CR for expansions+T [Aka93]

1992 Dougherty: CR+SN for expansions+T+sums, CR with recursion [Dou93]

1993 Di Cosmo - Kesner: modularity of CR and SN for expansions + algebraic systems, of CR
for recursion [DCK94a]

1993 Piperno, Ronchi Della Rocca: expansions for polymorphic type inference [PRDR94]

1994 Kesner: CR+SN for pattern calculus with η-expansion [Kes94]

1995 Ghani: expansion rules to decide equality for coproducts [Gha95]

1995 Di Cosmo - Piperno: SN+CR for polymorphic λ-calculus with η [DCP95]

1995 Di Cosmo - Kesner: SN+CR for polymorphic λ-calculus with η,η2,SP,T via modified
reducibility [DCK96]

1995 Danvy-Malmkjær-Palsberg: expansions in partial evaluation [DMP95]

1996 van Oostrom: CR for untyped η-expansion via developments [vO94]

1996 Kesner: η-expansion is the right choice for explicit substitutions [Kes96]

1996 Di Cosmo: CR and/or SN for η-expansions in various systems [DC96]

1996 Ghani: CR and SN for η-expansions in Fω [Gha97b]

1996 Ghani: CR for η-expansions in Coc [Gha97a]

1996 Xi: SN for η-expansions in F via internalisation

1997 Di Cosmo-Ghani: CR, SN for Fω with η-expansions and TRSs, CR for Coc with η-
expansions and TRSs; SN lost in Coc with usual expansions [DCG97]

1999 Barthe: SN for Coc with modified expansions, and non-duplicating TRSs [Bar99]
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Summary of results

Property

System CR SN CR with TRS CR+SN with TRS

untyped
√

n.a. ? n.a.

simply typed
√ √ √ √

NNO
√ √ √ √

recursion
√

n.a.
√

n.a.

weak case
√ √

? ?

strong case dec. no? ? no?

F with η
√ √ √ √

F with η, η2, SP
√ √ √ √

F ω
√ √ √ √

LF ?
√

? non dupl.

Coc ?
√

? non dupl.
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Techniques

Many techniques have been used to show SN and/or CR

with expansions:

•
simulation/interpretation

(Hardin, Tannen, Curien, DiCosmo, Kesner, etc.)

•
decomposition

(Akama, DiCosmo, Piperno, Geser, Kahrs, etc.)

•
residuals/developements

(Cubric, van Oostrom)

•
reductibility/internalisation

(DiCosmo, Kesner, Ghani, Jay, Xi)

We focus here mainly on some example from the first two

classes.
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Confluence via simulation/interpretation: a general lemma

Proposition 1.1 (Confluence via simulation) Given

two reduction relations R1, R2 on a given set of terms,

a reduction S ⊆ (R1 ∪R2)
∗, and a translation ◦ s.t.

• if M //R1 ∪R2N then M◦ =S N◦

• any S divergence on the terms in the image of R1∪R2

via ◦ can be closed using S

• the translation is the identity on the R1-normal-forms

then if R1 is weakly normalizing, R1 ∪R2 is confluent.

Proof. Here is how to close any divergence of R1 ∪R2:

P1
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N.B. for families of translations, it suffices to have

“ ∀M◦∃N◦.M◦ =S N◦”
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Confluence via simulation/interpretation: a general

lemma, cont’d

One then gets:

• Di Cosmo-Kesner’s lemma:

by requiring S to be R1, and asking for S reduction in-

stead of equality

• Hardin’s lemma:

by requiring R1 to be SN+CR, using R1-n.f. as ◦, and

asking for S reduction instead of equality

• Kamareddine-Rios’ lemma:

by using a fixed R1-normalization strategy f as ◦, and

asking for S reduction instead of equality

• Kesner’s lemma:

by using R1-normalization as ◦
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Decomposition Lemmas

To show that R is CR,

• decompose R into R1, . . .Rn

• identify properties of the subsystems s.t. CR for R can be deduced from CR
for the Ri’s

Lemma 1.2 (Hindley-Rosen ([Bar84], section 3))

If //R and //S are confluent, and commute with each

other, i.e.
//S //

��

R

��

R

����
✤

✤

✤

✤

✤

✤

S
////❴❴❴❴❴❴

then R ∪ S is confluent.

Establishing the commutation may be complex!

Lemma 1.3 (sufficient condition for commutation)

If
//S

��

R R

��✤
✤

✤

✤

✤

✤

=
S //❴❴❴❴❴❴

then //R // and //S // commute with each other.

Does not work with expansions!
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Decomposition Lemmas: DPG

For an arbitrary R we cant do better

· //R

��

S

·

��

S

· //R

��

S

·

��

S

//R ·

·

��

S

· //R ·

But if R is a SN, then we can do different

Lemma 1.4 (dual condition [Ges90, DCP95])

If R is strongly normalizing, and the following diagram

holds

(DPG)

a //R

��

S

b

S
����
✤

✤

✤

✤

c +
R // //❴❴❴❴ d

Then //R // and //S // commute.
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Decomposition Lemmas: Proof of DPG

Proof. Since R is a strongly normalizing rewriting system,

we have a well-founded order < on A by setting a1 < a2 if

a2
//R a1. Also, let us denote dist(a1, a2) the length of a

given S-reduction sequence from a1 to a2. The proof then

proceeds by well-founded induction on pairs (b, dist(a, b)),

ordered lexicographically. Indeed, if b is an R-normal form

and dist(a, b) = 0, then the lemma trivially holds. Other-

wise, by hypothesis, there exist a′, a′′, a′′′ as in the following

diagram.

a
�� S

//R
a′
�� S��

//R // c

S

����
✤
✤
✤
✤
✤
✤
✤

a′′

��

S

��

//R //R// a′′′

S
����
✤
✤
✤
✤

D1 D2

b
R // //❴❴❴❴❴ b′

R // //❴❴❴❴❴ d

We can now apply the inductive

hypothesis to the diagram D1,

since

(b, dist(a′′, b)) <lex (b, dist(a, b)).

Finally, we observe that b //
+
R // b′,

just composing the diagram in the

hypothesis down from a.
Hence we can apply the inductive hypothesis to the diagram

D2, since

(b′, dist(a′, b′)) <lex (b, dist(a, b)),

and we are done.
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Rewriting Lemmas: Confluence and Normalization

If one wants both confluence and normalization, here is a

nice useful lemma by Akama:

Lemma 1.5 (Akama) Let R, S be CR+SN. If

M //R

��

S
��

N

��

S
��

MS R
+

////❴❴❴❴ NS

then R ∪ S is CR+SN.

Again, difficult application, so here is how DPG helps:

Lemma 1.6 (Simplified Akama’s Lemma) Let S and

R be confluent and strongly normalizing reductions, s.t.

a //R

��

S

c

S
����
✤

✤

✤

✤

b +
R // //❴❴❴❴ d

and R preserves S-normal forms: then S ∪ R is also

confluent and strongly normalizing.

This lemma has been applied in a variety of systems,

see [DC96].
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Some applications of expansions

higher order unification

here terms are reduced to expansive normal form for uni-

fication

decision procedures for category theory

via expansive rewriting systems

isomorphisms of types

there is no nontrivial isomorphism without extensional-

ity and one needs a CR system for studying them, best

given with expansions

algebraic functional system

the combination with TRS’s leads to problems with con-

tractions, while expansions work fine
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Some applications of expansions

pattern calculi

need expansions to rewrite with extensionality [Kes94]

explicit substitutions

extensionality is only reasonable as an expansion: with

de Brujin indexes, testing x ∈ FV (M) means normaliz-

ing the substitution part; while with Delia Kesner showed

yu can simply write

M → λ. ↑ (M)1

flexible typing

working up to η-expansion can give better typings

partial evaluation

some folklore “triks” turn out to be expansions
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[Jay92] Colin Barry Jay. Long βη normal forms and confluence (revised).
Technical Report 44, LFCS - University of Edinburgh, August 1992.

[JG92] Colin Barry Jay and Neil Ghani. The Virtues of Eta-expansion. Tech-
nical Report ECS-LFCS-92-243, LFCS, 1992. University of Edim-
burgh, preliminary version of [JG95].

[JG95] Colin Barry Jay and Neil Ghani. The Virtues of Eta-expansion. Jour-
nal of Functional Programming, 5(2):135–154, April 1995.

20



[Kes94] Delia Kesner. Reasoning about layered, wildcard and product pat
terns. In Rod́ıguez-Artalejo Levi, editor, Int. Conf. on Algebraic and
Logic Programming (ALP), number 850 in LNCS. Springer-Verlag,
1994.

[Kes96] Delia Kesner. Confluence properties of extensional and non-
extensional λ-calculi with explicit substitutions. In Harald Ganzinger,
editor, Proc. of the Seventh International Conference on Rewriting
Techniques and Applications (RTA), number 1103 in LNCS, pages
184–199, 1996.

[Klo80] Jan Willem Klop. Combinatory reduction systems. Mathematical
Center Tracts, 27, 1980.

[LS86] Joachim Lambek and Philip J. Scott. An introduction to higher order
categorical logic. Cambridge University Press, 1986.

[Min79] Gregory Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye
problemy logiki i metodologii nauky, pages 252–278, 1979.

[Nec94] Ciprian Necula. Algebraic rewriting preserves (β, η) confluence in the
typed lambda calculus. Draft Manuscript, Pol. Inst. of Bucharest,
e-mail: George Ciprian Necula @ PL1.FOX.CS.CMU.EDU, 1994.

[Nes89] Dan Nesmith. An application of Klop’s counterexample to a higher-
order rewrite system. Draft Paper, 1989.

[Pot81] Garrel Pottinger. The Church Rosser Theorem for the Typed lambda-
calculus with Surjective Pairing. Notre Dame Journal of Formal Logic,
22(3):264–268, 1981.

[Pra71] D. Prawitz. Ideas and results in proof theory. Proceedings of the 2nd
Scandinavian Logic Symposium, pages 235–307, 1971.

[PRDR94] Adolfo Piperno and Simonetta Ronchi Della Rocca. Type inference
and extensionality. In Symp. on Logic in Computer Science (LICS),
Paris, France, July 1994. IEEE computer society Press.
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