
EXAMPLES SHOWING HOW TO READ A SPIM MEMORY DUMP

BITS AND BYTES:

1 byte = 8 bits = 2 hexadecimal digits
32 bits = 4 bytes = 8 hexadecimal digits

HEXADECIMAL NOTATION

In the standard C notation 0x12abcdef, the symbol "0x" means
"treat what follows as an unsigned integer in the hexadecimal
representation". For example, 0x12abcdef denotes the unsigned
32-bit integer that one writes as 313,249,263 in the unsigned
decimal representation. 0x12abcdef also denotes 313,249,263
(base 10) in two's complement notation.

BYTE-ADDRESSED MEMORY

Modern microprocessors can address each byte of main memory
from address 0x00000000 up to and including the maximum
address allowed in the instruction set architecture.
The maximum address in a 32-bit architecture is 0xffffffff.

WORD ADDRESSES

In a 32-bit architecture such as the MIPS R2000, words are
32 bits (4 bytes) in length. Addresses in main memory,
registers and instructions are all 32 bits in length. Valid
word addresses are 0x00000000, 0x00000004, 0x00000008,
0x0000000c (12 in decimal), 0x00000010 (16 in decimal),
0x00000014 (20 in decimal), 0x00000018 (24 in decimal),
0x0000002c (28 in decimal), and every other multiple of 4 up
to and including 0xfffffffc.

The address of a 4-byte word is always the address of the
byte with the lowest address.

BYTE ORDERING

Because memory is byte-addressed, the order in which the four
bytes of a word in memory are assembled to form a numerical
constant or an instruction is a matter of convention. Let's
consider the following example of addresses and the contents
(bytes) stored at each address:

Byte addresses Contents Word addresses

[0x00000007] 0xce >
[0x00000006] 0x8a >
[0x00000005] 0x46 >
[0x00000004] 0x02 > 0x00000004
[0x00000003] 0xef }
[0x00000002] 0xcd }
[0x00000001] 0xab }
[0x00000000] 0x12 } 0x00000000

Two conventions are common:

BIG-ENDIAN byte ordering
(used in most architectures other than VAX or 80x86):

The word at address 0x00000000 in the above example is
read as 0x12abcdef. The word at address 0x00000004 is
read as 0x02468ace. Note that the most significant

("biggest") byt e has th e lowes t address , and therefore
i s th e byt e whose addres s i s th e addres s of th e whole
word. (Henc e th e word addres s i s th e addres s of th e
"bi g end".)

I n thi s example , th e word at addres s 0x0000000 0 would
be interprete d as representin g 313,249,26 3 (decimal)
i n th e 32-bi t two' s complemen t representation. The
word at addres s 0x0000000 4 woul d be interprete d as
38,177,48 6 (decimal) i n th e 32-bi t two' s complement
representation.

LITTLE-ENDIA N byt e ordering
(use d i n th e 80x8 6 architecture , therefor e i n al l PCs):

The word at addres s 0x0000000 0 i n th e abov e exampl e i s
rea d as 0xefcdab12. The word at addres s 0x0000000 4 i s
rea d as 0xce8a4602. Not e tha t th e leas t significant
("littlest") byt e has th e lowes t address , and therefore
i s th e byt e whose addres s i s th e addres s of th e whole
word. (Henc e th e word addres s i s th e addres s of th e
"littl e end".)

I n thi s example , th e word at addres s 0x0000000 0 would
be interprete d as representin g -271,733,99 8 (decimal)
i n th e 32-bi t two' s complemen t representation. The
word at addres s 0x0000000 4 woul d be interprete d as
-829,798,91 0 (decimal) i n th e 32-bi t two' s complement
representation.

MEMORY DUMPS

Sinc e ther e ar e version s of SPIM on bot h big-endia n and little-
endia n architectures , we giv e example s fo r al l of th e
architecture s on whic h student s ar e likel y t o ru n SPIM.

BIG-ENDIA N (Motorol a 680x0 , IB M PowerPC, Sun SPARC, DEC Alpha,
HP PA-RISC, MIPS)

Here' s th e firs t par t of a SPIM displa y of th e dat a segment
of th e progra m display.sa l (liste d below) , wit h extra
annotation s t o explai n what' s goin g on:

DATA
[0x10000000]...[0x1000fffc] 0x00000000
<---- - rang e of word -----> ^^^^^^^^

addresses ; each |
word contains |

0x0000000 0 -------------

Word addresses:

[0x10010000] 0x43000000 0x00007fff 0x46fffe00 0x48656c6c
^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^
addres s of addres s i s addres s i s addres s i s addres s i s
firs t word 0x10010000 0x10010004 0x10010008 0x1001000c
on this = add. of = add. of = add. of
lin e i s i n 1st word 1st word 1st word
brackets + 4 + 8 + c

[0x10010010] 0x6f2c2077 0x6f726c64 0x21004865 0x6c6c6f2c
^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^
addres s of addres s i s addres s i s addres s i s addres s i s
firs t word 0x10010010 0x10010014 0x10010018 0x1001001c

on this = add. of = add. of = add. of
lin e i s i n 1st word 1st word 1st word
brackets + 4 + 8 + c

Byt e addressin g examples:

The byt e at addres s 0x1001000 d i s 0x65. The byt e at
addres s 0x1001000 e i s 0x6c.

Dat a storag e order:

I n th e sourc e progra m declare.sa l (liste d below) , th e
firs t dat a declaratio n reserve s a byt e (wit h th e ASCII
valu e 'C ' and th e numerica l valu e 0x43). The res t of
th e word i s 0's , becaus e th e nex t dat a ite m declared
i s an integer , and th e nex t vali d word addres s i s
0x10010004. The valu e of th e intege r i s
32,76 7 (bas e 10) = 0x00007fff.
The thir d dat a ite m declare d i s a floating-poin t number
wit h th e valu e 3.276 7 X 10^ 4 (it s IEEE-75 4 floating-point
representatio n i s 0x46fffe00). The nex t dat a declaration
i s fo r a null-terminate d string , "Hello , world! " Note
tha t a nul l byte , 0x00 at addres s 0x1001001 9 immediately
follow s (i.e. , terminates) th e byte s of th e string.
(An d so on...)

LITTLE-ENDIA N (Inte l 80x86):

Here' s th e firs t par t of a SPIM displa y of th e dat a segment
of th e progra m display.sa l (liste d below) , wit h extra
annotation s t o explai n what' s goin g on:

DATA
[0x10000000]..[0x1000ffff] 0x00000000
<---- - rang e of BYTE ----> ^^^^^^^^

addresses ; each |
WORD contains |

0x0000000 0 -------------

Word addresses:

[0x10010000]..[0x1000000f] 0x00000043 0x00007fff 0x46fffe00 0x6c6c6548
<---- - rang e of byt e ---- > ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^

addresses word word word word
addres s i s addres s i s addres s i s addres s i s
0x10010000 0x10010004 0x10010008 0x1001000c

= add. of = add. of = add. of
1st word 1st word 1st word
+ 4 + 8 + c

[0x10010010]..[0x1000001f] 0x77202c6f 0x646c726f 0x65480021 0x2c6f6c6c
<---- - rang e of byt e ---- > ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^

addresses word word word word
addres s i s addres s i s addres s i s addres s i s
0x10010010 0x10010014 0x10010018 0x1001001c

= add. of = add. of = add. of
1st word 1st word 1st word
+ 4 + 8 + c

Byt e addressin g examples:

The byt e at addres s 0x1001000 d i s 0x6c. The byt e at address
0x1001000 e i s 0x65. Not e tha t th e byt e orderin g i s DISPLAYED

as reversed only for character (single-byte) and string data. (The
words at addresses 0x10010004 and 0x10010008 are numeric data, for
which the creators of SPIM wisely decided not to reverse the displayed
byte ordering). Similarly, the assembled MIPS instructions in the
text segment are displayed with the same byte ordering on big-endian
and little-endian machines.

SAL program declare.sal
Data segment
.data
c: .byte 'C' # C equivalent: char c;
c = 'C';
n: .word 32767 # C equivalent: int n;
n = 32767;
f: .float 3.2767e4 # C equivalent: float f;
f = 3.2767e4;
greet0: .asciiz "Hello, world!"
greet: .ascii "Hello, world!"
newline: .byte '\n'
Text segment (instructions)
.text
__start: # Start of arithmetic & logical operations
put c # C equivalent: printf("%c\n",c);
put newline #
put n # C equivalent: printf("%d\n",n);
put newline #
put f # C equivalent: printf("%6.6f\n",f);
put newline #
puts greet0 # C equivalent: printf("Hello, world!");
put newline #
done # Return control to the OS

